

Behavioural Model

of a DCDC Converter

written in VHDL-AMS

SYNOPSYS User Group Saber (SNUG Saber), October,8th,2002,Munich

Contents

1.) Introduction:

Behavioural Models / VDL-AMS

2.) DCDC Converter: Specification Realization

3.) Model Description: Graphical Structure Behavioural Models

4.) Simulation Results

5.) Conclusion

SYNOPSYS User Group Saber (SNUG Saber), October,8th,2002,Munich

1.) Introduction :

Behavioural Models / VHDL-AMS

SYNOPSYS User Group Saber (SNUG Saber), October,8th,2002,Munich

2.) DCDC Converter : Specification (Main Points)

Future cars : 2 voltages for board net: 42V, 14V -> DCDC Converter for both directions

Buck Mode	42 V → 14 V	Boost Mode	42 V ← 14 V
- input voltage	30V 50V	- input voltage	9V 16V
- output voltage	14V (12V16V)	- output voltage	42V (36V48V)
- output current limit	72A	- output current limit	24A
- voltage drop at max. current	0.4V	- voltage drop at max. current	0.4V
-settling time	<2ms	-settling time	<2ms
- ripples	<100mV	- ripples	<100mV
- efficiency	95 % (300 – 700W) 93.5 % (700 – 1000W)	-efficiency	95 % (300 – 700W) 93.5 % (700 – 1000W)

2) DCDC Converter : Specification (realization)

Behavioural Model of a DCDC Converter written in VHDL-AMS Ewald Hessel, Lippstadt

Munich 2002

SYNOPSYS User Group Saber (SNUG Saber), October,8th,2002,Munich

3.) Model Description : Graphical Structure of Behavioural Model

October,8th,2002,Munich

Behavioural Model of a DCDC Converter written in VHDL-AMS

3.) Model Description : Model of a Switch (VHDL-AMS)

	BCHITECTURE ideal OF switch IS		CARED				
G	QUANTITY V ACROSS I THROUGH	p TO m;	Allenner				
B	BEGIN						
IF	F ctrl USE v == 0.0; sw	itch closed					
E	LSE i == 0.0; sw	itch open					
E	ND USE;						
В	BREAK ON ctrl;						
E	ND architecture ideal;						
A	ARCHITECTURE real OF switch IS						
C	QUANTITY v ACROSS i THROUGH	p TO m;					
В	BEGIN						
IF	F ctrl USE v == i * r_on; swi	itch closed					
E	ELSE v== i * r_off; sw	itch open					
E	ND USE;						
B	BREAK ON ctrl;						
E	ND architecture real;						

3.) Model Description : Graphical Structure of Behavioural Model

October,8th,2002,Munich

Behavioural Model of a DCDC Converter written in VHDL-AMS Ewald Hessel, Lippstadt

9

SYNOPSYS User Group Saber (SNUG Saber), October,8th,2002,Munich

Behavioural Model of a DCDC Converter written in VHDL-AMS

1

3.) Model Description: Converter for Buck Mode (VHDL-AMS) [1]

-- voltage drop

-- time constant

-- dyn. voltage drop

Library IEEE;

use ieee.math_real.all;

USE work.electrical_systems.ALL;

ENTITY dcdc_ua14 IS

GENERIC (

imax_14	: REA	L := 72.0); max.	current
---------	-------	-----------	---------	---------

ud : REAL := 0.4;

tt : *REAL* := 0.5e-3;

us : REAL := 0.5;

r_on : REAL := 1.0e-4; -- switch on

r_off : REAL := 1.0e9); -- switch off

PORT (TERMINAL u42, u14_ref, u14 : electrical);

END ENTITY dcdc_ua14;

 $\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$

ARCHITECTURE simple OF dcdc_ua14 IS TERMINAL u14_0,u14_1,u14_2 : ELECTRICAL; QUANTITY v42 ACROSS i42 THROUGH u42 TO electrical_ref; QUANTITY v14_ref ACROSS u14_ref TO electrical_ref; QUANTITY v14_0 ACROSS i14_0 THROUGH u14_0 TO electrical_ref; QUANTITY v14 ACROSS u14 TO electrical_ref; QUANTITY v14 ACROSS ir14 THROUGH u14_0 to u14_1; QUANTITY vr14 ACROSS il THROUGH u14_1 TO u14_2; QUANTITY vI ACROSS il THROUGH u14_2 TO u14; QUANTITY vd ACROSS id THROUGH u14_2 TO u14; QUANTITY vd ACROSS id THROUGH u14_2 TO u14;

SYNOPSYS User Group Saber (SNUG Saber), October.8th.2002.Munich

3.) Model Description: Converter for Buck Mode (VHDL-AMS) [2]

 $\sim \sim$

vr14

v14 0

electrical ref

BEGIN

efficiency == 88.07 + 1.4319*ir14 - 104.28625e-3*ir14**2.0 + 3.788357e-3*ir14**3.0 - 73.44230e-6*ir14**4.0 + 719.9188e-9*ir14**5.0 -2.80269e-9*ir14**6.0;

*i42 * v42 * efficiency/100.0 == v14 * ir14;*

IF v42<= 30.0 *USE* v14_0 == 0.0;

ELSE IF v42>50.0 USE v14_0 == 0.0;

ELSE v14_0 + tt * v14_0'dot == v14_ref;

END USE;

END USE;

BREAK WHEN v42>= 50.0;

BREAK WHEN v42<=30.0;

```
IF ir14 <= imax_14 USE vr14 == (ud / imax_14 ) * ir14;
ELSE vr14 == ud + (ir14-imax_14) * 100.0e6;
END USE;
BREAK WHEN (ir14=imax_14);
vl == tt/3.0 * 1.0/(imax_14*(1.0/ud + 1.0/us)) * il'dot;
ir == vl / (us/imax_14);
IF vd >= 0.0 USE id == vd/r_on;
ELSE id == vd/r_off;
END USE;
END ARCHITECTURE simple;
```

vd

v14

SYNOPSYS User Group Saber (SNUG Saber), October,8th,2002,Munich

October,8th,2002,Munich

Behavioural Model of a DCDC Converter written in VHDL-AMS

Benefits:

simple model structure (independent of physical structure)
 black box modeling possible

- small models compared to physical models (better performance)
- easy use in upper system shells
- use of one universal simulation language for heterogeneous systems

Problems:

- none or only little relation to physical system

- all effects of interest must be considered and modeled seperately
- limitation of use because of limited model behaviour
- great experience needed for modeling

5.) Conclusion : VHDL-AMS

Benefits

 toolindependent language (IEEE 1076.1) - different tools available - different modeling levels for same entity - multiple use of models - simple model exchange - standardized (public) model libraries possible

Problems

- only a few tools available today - actually none tool supports the full standard - no standardidized packages for natures no standardized fundamental models

Behavioural Model of a DCDC Converter written in VHDL-AMS

[2]

Growing Complexity of Future Systems Will Require Behavioural Modeling and Use of Standard Modeling Language VHDL-AMS

SYNOPSYS User Group Saber (SNUG Saber), October,8th,2002,Munich

5.) Conclusion

Behavioural Model of a DCDC Converter written in VHDL-AMS

1